Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Science ; 379(6630): 376-381, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36701440

RESUMO

Light regulates physiology, mood, and behavior through signals sent to the brain by intrinsically photosensitive retinal ganglion cells (ipRGCs). How primate ipRGCs sense light is unclear, as they are rare and challenging to target for electrophysiological recording. We developed a method of acute identification within the live, ex vivo retina. Using it, we found that ipRGCs of the macaque monkey are highly specialized to encode irradiance (the overall intensity of illumination) by blurring spatial, temporal, and chromatic features of the visual scene. We describe mechanisms at the molecular, cellular, and population scales that support irradiance encoding across orders-of-magnitude changes in light intensity. These mechanisms are conserved quantitatively across the ~70 million years of evolution that separate macaques from mice.


Assuntos
Evolução Biológica , Iluminação , Células Ganglionares da Retina , Animais , Camundongos , Luz , Células Ganglionares da Retina/fisiologia , Macaca
2.
Neuron ; 108(2): 335-348.e7, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-32846139

RESUMO

The fovea is a neural specialization that endows humans and other primates with the sharpest vision among mammals. This performance originates in the foveal cones, which are extremely narrow and long to form a high-resolution pixel array. Puzzlingly, this form is predicted to impede electrical conduction to an extent that appears incompatible with vision. We observe the opposite: signal flow through even the longest cones (0.4-mm axons) is essentially lossless. Unlike in most neurons, amplification and impulse generation by voltage-gated channels are dispensable. Rather, sparse channel activity preserves intracellular current, which flows as if unobstructed by organelles. Despite these optimizations, signaling would degrade if cones were lengthier. Because cellular packing requires that cone elongation accompanies foveal expansion, this degradation helps explain why the fovea is a constant, miniscule size despite multiplicative changes in eye size through evolution. These observations reveal how biophysical mechanisms tailor form-function relationships for primate behavioral performance.


Assuntos
Potenciais da Membrana , Células Fotorreceptoras Retinianas Cones/fisiologia , Visão Ocular/fisiologia , Acuidade Visual/fisiologia , Animais , Feminino , Macaca fascicularis , Macaca mulatta , Masculino , Células Fotorreceptoras Retinianas Cones/citologia
3.
J Neurophysiol ; 111(3): 544-51, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24225543

RESUMO

Numerous brain structures have a cerebellum-like architecture in which inputs diverge onto a large number of granule cells that converge onto principal cells. Plasticity at granule cell-to-principal cell synapses is thought to allow these structures to associate spatially distributed patterns of granule cell activity with appropriate principal cell responses. Storing large sets of associations requires the patterns involved to be normalized, i.e., to have similar total amounts of granule cell activity. Using a general model of associative learning, we describe two ways in which granule cells can be configured to promote normalization. First, we show how heterogeneity in firing thresholds across granule cells can restrict pattern-to-pattern variation in total activity while also limiting spatial overlap between patterns. These effects combine to allow fast and flexible learning. Second, we show that the perceptron learning rule selectively silences those synapses that contribute most to pattern-to-pattern variation in the total input to a principal cell. This provides a simple functional interpretation for the experimental observation that many granule cell-to-Purkinje cell synapses in the cerebellum are silent. Since our model is quite general, these principles may apply to a wide range of associative circuits.


Assuntos
Potenciais de Ação , Aprendizagem por Associação , Cerebelo/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Potenciais Sinápticos , Animais , Humanos , Neurônios/fisiologia , Sinapses/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...